Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available March 31, 2026
- 
            Free, publicly-accessible full text available February 1, 2026
- 
            The genusPseudogymnoascusincludes several species frequently isolated from extreme environments worldwide, including cold environments such as Antarctica. This study describes three new species ofPseudogymnoascus—P. russussp. nov.,P. irelandiaesp. nov., andP. ramosussp. nov.—isolated from Antarctic soils. These species represent the firstPseudogymnoascustaxa to be formally described from Antarctic soil samples, expanding our understanding of fungal biodiversity in this extreme environment. Microscopic descriptions of asexual structures from living cultures, along with measurements of cultural characteristics and growth on various media types at different temperatures, identify three distinct new species. In addition, phylogenetic analyses based on five gene regions (ITS, LSU, MCM7, RPB2, TEF1) and whole-genome proteomes place these new species within three distinct previously described clades:P. irelandiaein clade K,P. ramosusin clade Q, andP. russusin clade B. These results provide further evidence of the extensive undescribed diversity ofPseudogymnoascusin high-latitude soils. This study contributes to the growing body of knowledge on Antarctic mycology and the broader ecology of psychrophilic and psychrotolerant fungi.more » « lessFree, publicly-accessible full text available March 21, 2026
- 
            The genusPseudogymnoascusincludes several species frequently isolated from extreme environments worldwide, including cold environments such as Antarctica. This study describes three new species ofPseudogymnoascus—P. russussp. nov.,P. irelandiaesp. nov., andP. ramosussp. nov.—isolated from Antarctic soils. These species represent the firstPseudogymnoascustaxa to be formally described from Antarctic soil samples, expanding our understanding of fungal biodiversity in this extreme environment. Microscopic descriptions of asexual structures from living cultures, along with measurements of cultural characteristics and growth on various media types at different temperatures, identify three distinct new species. In addition, phylogenetic analyses based on five gene regions (ITS, LSU, MCM7, RPB2, TEF1) and whole-genome proteomes place these new species within three distinct previously described clades:P. irelandiaein clade K,P. ramosusin clade Q, andP. russusin clade B. These results provide further evidence of the extensive undescribed diversity ofPseudogymnoascusin high-latitude soils. This study contributes to the growing body of knowledge on Antarctic mycology and the broader ecology of psychrophilic and psychrotolerant fungi.more » « lessFree, publicly-accessible full text available March 21, 2026
- 
            Background: The family Batrachoididae are a group of ecologically important teleost fishes with unique life histories, behavior, and physiology that has made them popular model organisms. Batrachoididae remain understudied in the realm of genomics, with only four reference genome assemblies available for the family, with three being highly fragmented and not up to current assembly standards. Among these is the Gulf toadfish, Opsanus beta, a model organism for serotonin physiology which has recently been bred in captivity. Results: Here we present a new, de novo genome and transcriptome assemblies for the Gulf toadfish using PacBio long read technology. The genome size of the final assembly is 2.1 gigabases, which is among the largest teleost genomes. This new assembly improves significantly upon the currently available reference for Opsanus beta with a final scaffold count of 62, of which 23 are chromosome scale, an N50 of 98,402,768, and a BUSCO completeness score of 97.3%. Annotation with ab initio and transcriptome-based methods generated 41,076 gene models. The genome is highly repetitive, with ~ 70% of the genome composed of simple repeats and transposable elements. Satellite DNA analysis identified potential telomeric and centromeric regions. Conclusions: This improved assembly represents a valuable resource for future research using this important model organism and to teleost genomics more broadly.more » « lessFree, publicly-accessible full text available December 1, 2025
- 
            The present work investigates fracture toughness, and actuation and mechanical fatigue crack growth responses of Ni50.3Ti29.7Hf20 HTSMAs across martensitic transformation with two different microstructures, one with H-phase nanoprecipitates and one without. H-phase precipitation is known to stabilize the actuation cycling response of NiTiHf HTSMAs and notably impacts transformation-induced plasticity. The fracture toughness tests performed reveal that precipitate-free NiTiHf has a higher fracture toughness and undergoes significantly more inelastic deformation than the one with the precipitates resulting in toughness enhancement, i.e., stable crack advance during fracture toughness experiments, which is not observed in the precipitated NiTiHf for the crack configuration and loading conditions tested. Furthermore, the precipitate free NiTiHf has higher actuation and mechanical fatigue crack growth resistance than the precipitation-hardened microstructure. This is attributed to plasticity buildup, which exacerbates the manifestation of retained martensite upon repeated transformations. The fatigue crack growth rates obtained from both actuation and mechanical fatigue experiments align to a single Paris Law Curve for the precipitation-hardened NiTiHf. This work aims to determine if unified Paris Law curves can be generated from mechanical and actuation fatigue experiments, irrespective of composition and microstructure, to estimate actuation fatigue crack growth rates, laborious and challenging to measure, from easier to detect mechanical fatigue crack growth rates.more » « less
- 
            Abstract Shape-morphable electrode arrays can form 3D surfaces to conform to complex neural anatomy and provide consistent positioning needed for next-generation neural interfaces. Retinal prostheses need a curved interface to match the spherical eye and a coverage of several cm to restore peripheral vision. We fabricated a full-field array that can (1) cover a visual field of 57° based on electrode position and of 113° based on the substrate size; (2) fold to form a compact shape for implantation; (3) self-deploy into a curvature fitting the eye after implantation. The full-field array consists of multiple polymer layers, specifically, a sandwich structure of elastomer/polyimide-based-electrode/elastomer, coated on one side with hydrogel. Electrodeposition of high-surface-area platinum/iridium alloy significantly improved the electrical properties of the electrodes. Hydrogel over-coating reduced electrode performance, but the electrodes retained better properties than those without platinum/iridium. The full-field array was rolled into a compact shape and, once implanted into ex vivo pig eyes, restored to a 3D curved surface. The full-field retinal array provides significant coverage of the retina while allowing surgical implantation through an incision 33% of the final device diameter. The shape-changing material platform can be used with other neural interfaces that require conformability to complex neuroanatomy.more » « less
- 
            Mapder, Tarunendu (Ed.)Reef-building corals contain a complex consortium of organisms, a holobiont, which responds dynamically to disease, making pathogen identification difficult. While coral transcriptomics and microbiome communities have previously been characterized, similarities and differences in their responses to different pathogenic sources has not yet been assessed. In this study, we inoculated four genets of the Caribbean branching coral Acropora palmata with a known coral pathogen ( Serratia marcescens ) and white band disease. We then characterized the coral’s transcriptomic and prokaryotic microbiomes’ (prokaryiome) responses to the disease inoculations, as well as how these responses were affected by a short-term heat stress prior to disease inoculation. We found strong commonality in both the transcriptomic and prokaryiomes responses, regardless of disease inoculation. Differences, however, were observed between inoculated corals that either remained healthy or developed active disease signs. Transcriptomic co-expression analysis identified that corals inoculated with disease increased gene expression of immune, wound healing, and fatty acid metabolic processes. Co-abundance analysis of the prokaryiome identified sets of both healthy-and-disease-state bacteria, while co-expression analysis of the prokaryiomes’ inferred metagenomic function revealed infected corals’ prokaryiomes shifted from free-living to biofilm states, as well as increasing metabolic processes. The short-term heat stress did not increase disease susceptibility for any of the four genets with any of the disease inoculations, and there was only a weak effect captured in the coral hosts’ transcriptomic and prokaryiomes response. Genet identity, however, was a major driver of the transcriptomic variance, primarily due to differences in baseline immune gene expression. Despite genotypic differences in baseline gene expression, we have identified a common response for components of the coral holobiont to different disease inoculations. This work has identified genes and prokaryiome members that can be focused on for future coral disease work, specifically, putative disease diagnostic tools.more » « less
- 
            Ferrate(VI) has the potential to play a key role in future water supplies. Its salts have been suggested as “green” alternatives to current advanced oxidation and disinfection methods in water treatment, especially when combined with ultraviolet light to stimulate generation of highly oxidizing Fe(V) and Fe(IV) species. However, the nature of these intermediates, the mechanisms by which they form, and their roles in downstream oxidation reactions remain unclear. Here, we use a combination of optical and X-ray transient absorption spectroscopies to study the formation, interconversion, and relaxation of several excited-state and metastable high-valent iron species following excitation of aqueous potassium ferrate(VI) by ultraviolet and visible light. Branching from the initially populated ligand-to-metal charge transfer state into independent photophysical and photochemical pathways occurs within tens of picoseconds, with the quantum yield for the generation of reactive Fe(V) species determined by relative rates of the competing intersystem crossing and reverse electron transfer processes. Relaxation of the metal-centered states then occurs within 4 ns, while the formation of metastable Fe(V) species occurs in several steps with time constants of 250 ps and 300 ns. Results here improve the mechanistic understanding of the formation and fate of Fe(V) and Fe(IV), which will accelerate the development of novel advanced oxidation processes for water treatment applications.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
